Microbial load and diversity in the gastro-intestinal tract of cultured Nile tilapia (Oreochromis niloticus) and hybrid catfish (Clarias gariepinus ♀ x Heterobranchus bidorsalis ♂) in Ilorin Metropolis, Nigeria

Wasiu Adeyemi Jimoh, Taofeek Sulyman, Ayomide Damilare Taiwo


This study investigated microbial load and diversity of gastro-intestinal tract of the cultured Nile tilapia (Oreochromis niloticus) and hybrid catfish (Clarias gariepinus ♀ x Heterobranchus bidorsalis ♂) in Ilorin metropolis, Nigeria. A set of apparently healthy Nile Tilapia and hybrid catfish were obtained from a fish farm in Ilorin metropolis. After dissecting the fish sample aseptically, the entire alimentary canals of the specimens were divided into foregut, midgut and hindgut. Then bacterial isolates were characterised, following standard operating procedures for gram reaction, morphology, motility, catalase and oxidase reactions, citrate utilization, coagulase production, starch hydrolysis, sugar fermentation, and eventual identification of the resultant colonies. The moulds were examined based on their micro-morphology as well as the colour and micro-morphology of their sporulating structures and conidia. The results of the study revealed that microbes were present in the entire gastro-intestinal tract of cultured hybrid catfish and Nile tilapia with highest microbial load found in the hindgut of the two fish species under study. Also, larger number of bacteria diversity indices were found in the hindgut of cultured Nile tilapia, while the hindgut of cultured clariid catfish had higher fungi diversity indices.


Yeast load, Bacteria load, Fish gut, Shannon-Weiner index, Simpson Dominance.

Full Text:



Andlid T., Juárez R.-V., Gustafsson L. (1995). Yeast colonizing the intestine of rainbow trout (Salmo gairdneri) and turbot (Scophtalmus maximus). Microbial Ecology, 30(3), 321-334.

Askarian F., Zhou Z., Olsen R.E., Sperstad S., Ringø E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326: 1-8.

Bairagi A., Ghosh K.S., Sen S.K., Ray A.K. (2002). Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International, 10(2): 109-121.

Banerjee S., Ghosh K. (2014). Enumeration of gut associated extracellular enzyme‐producing yeasts in some freshwater fishes. Journal of Applied Ichthyology, 30(5): 986-993.

Banerjee S., Mukherjee A., Dutta D., Ghosh K. (2015). Evaluation of chitinolytic gut microbiota in some carps and optimization of culture conditions for chitinase production by the selected bacteria. The Journal of Microbiology, Biotechnology and Food Sciences, 5(1): 12.

Banerjee S., Mukherjee A., Dutta D., Ghosh K. (2016). Non-Starch Polysaccharide Degrading Gut Bacteria in Indian Major Carps and Exotic Carps. Jordan Journal of Biological Sciences, 147(3384): 1-10.

Cahill M.M. (1990). Bacterial flora of fishes: a review. Microbial Ecology, 19(1): 21-41.

Chi Z., Chi Z., Zhang T., Liu G., Li J., Wang X. (2009). Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnology Advances, 27(3): 236-255.

Claus D. (1992). A standardized Gram staining procedure. World journal of Microbiology and Biotechnology, 8(4): 451-452.

Clements K., Choat J. (1995). Fermentation in tropical marine herbivorous fishes. Physiological Zoology, 68(3): 355-378.

Clements K.D. (1997). Fermentation and gastrointestinal microorganisms in fishes Gastrointestinal microbiology. In: R.I. Mackie, B.A. White (Eds.). Gastrointestinal Microbiology. Chapman and Hall, New York. pp: 156-198.

Clements K.D., Raubenheimer D., Choat J.H. (2009). Nutritional ecology of marine herbivorous fishes: ten years on. Functional Ecology, 23(1): 79-92.

Das P., Ghosh K. (2014). The presence of phytase in yeasts isolated from the gastrointestinal tract of four major carps [Labeo rohita (Hamilton, 1822), Catla catla (Hamilton, 1822), Cirrhinus mrigala (Hamilton, 1822), Hypophthalmichthys molitrix (Valenciennes, 1844)], climbing perch [Anabas testudineus (Bloch, 1792)] and Mozambique tilapia [Oreochromis mossambicus (Linnaeus, 1758)]. Journal of Applied Ichthyology, 30(2): 403-407.

Gatesoupe F. (2007). Live yeasts in the gut: natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture, 267(1-4): 20-30.

Gatesoupe F.J., Aubin J., Quentel C., Labbé L., (2005a). Ofimer probiotic study on rainbow trout. IV. The settlement of intestinal microbiota in rainbow trout (Oncorhynchus mykiss) fry submitted to probiotic treatment. In: Hendry, C.I., Van Stappen, G., Wille, M., Sorgeloos, P. (Eds.), Larvi 2005, 4th Fish and Shellfish Larviculture Symposium, 5–8 September 2005, Ghent University, Gent, Belgium. EAS Special Publication, vol. 36.European Aquaculture Society, Oostende, Belgium. pp. 180-183.

Gatesoupe F.J., Aubin J., Quentel C., Labbé L., Forraz M., (2005b). Ofimer probiotic study on rainbow trout. II. Intestinal microbiota in rainbow trout (Oncorhynchus mykiss) submitted to probiotic treatment with Saccharomyces cerevisiae var. boulardii. In: Howell, B., Flos, R. (Eds.), Lessons from the Past to Optimise the Future, Aquaculture Europe 2005, Trondheim, Norway, 5-9 August 2005. EAS Special Publication, vol. 35. European Aquaculture Society, Oostende, Belgium. pp. 217-218.

Ghosh K., Ray A.K. (2017). Aquafeed formulation using plant feedstuffs: Prospective application of fish-gut microorganisms and microbial biotechnology. Soft Chemistry and Food Fermetation, 109-144.

Ghosh K., Sen S.K., Ray A.K. (2002). Characterization of Bacilli isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion. Journal of Applied Aquaculture, 12(3): 33-42.

Gibson G.R., Probert H.M., Van Loo J., Rastall R.A., Roberfroid M.B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17(2): 259-275.

Gibson G.R., Roberfroid M.B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition, 125(6): 1401-1412.

Gray J. (2006). Dietary fibre, definition, analysis, physiology and health. ILSI Europe Concise Monograph Series, Brussels. 35 p.

Guarner F., Malagelada J.-R. (2003). Gut flora in health and disease. The Lancet, 361(9356): 512-519.

Hamid A., Sakata T., Kakimoto D. (1979). Microflora in the alimentary tract of gray mullet. IV. Estimation of enzymic activities of the intestinal bacteria. Bulletin of the Japanese Society of Scientific Fisheries, 45(1): 99-106.

Harrigan W.F., McCance M.E. (1976). Laboratory methods in food and dairy microbiology: Academic Press Inc.(London) Ltd. 452 p.

Holt J.G., Krieg N., Sneath P.H., Staley J., Williams S. (1994). Bergey’s manual of determinative bacteriology. 9th. Baltimor: William and Wilkins. 976 p.

Jimoh W., Jabar M., Adeleke M., Bello B. (2009a). Bacterial isolates in the different gut regions of captured and cultured Clarias gariepinus in Abeokuta North Local Government. Nigerian Journal of Fisheries, 6(1&2): 63-70.

Jimoh W., Jabar M., Adeleke M., Bello B. (2009b). Diversity and microbial load of fungi isolates of the gut sections of captured and cultured Clarias gariepinus in Abeokuta South Western Nigeria. Journal of Field Aquatic Studies, Nigeria, 5: 54-60.

Jimoh W., Oladele-Bukola M., Adebayo M., Yusuff A., Azeez F., Salami O. (2013). Microbial flora of the gastro-intestinal tract of Nile tilapia (Oreochromis niloticus) caught from river Dandaru, Ibadan. Nigerian Journal of Fisheries, 10 (1&2): 632-637.

Jimoh W., Oladele-Bukola M., Adebayo M., Yusuff A., Azeez F., Salami O. (2014). Microbial flora of the gastro-intestinal tract of Clarias gariepinus caught from river Dandaru Ibadan, Nigeria. Sokoto Journal of Veterinary Sciences, 12(2): 19-24.

Kar N., Ghosh K. (2008). Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turkish Journal of Fisheries and Aquatic Sciences, 8(1): 115-120.

Kar N., Roy R., Sen S., Ghosh K. (2008). Isolation and characterization of extracellular enzyme producing bacilli in the digestive tracts of rohu, Labeo rohita (Hamilton) and Murrel, Channa punctatus (Bloch). Asian Fisheries Science, 21(4): 421-434.

Khan A., Ghosh K. (2012). Characterization and identification of gut-associated phytase-producing bacteria in some freshwater fish cultured in ponds. Acta Ichthyologica et Piscatoria, 42(1).

Kutty S.N., Philip R. (2008). Marine yeasts—a review. Yeast, 25(7): 465-483.

Mandal S., Ghosh K. (2013a). Isolation of tannase‐producing microbiota from the gastrointestinal tracts of some freshwater fish. Journal of Applied Ichthyology, 29(1): 145-153.

Mandal S., Ghosh K. (2013b). Optimization of tannase production and improvement of nutritional quality of two potential low-priced plant feedstuffs under solid state fermentation by Pichia kudriavzevii isolated from fish gut. Food Biotechnology, 27(1): 86-103.

Moffitt C.M., Mobin S.M. (2006). Profile of microflora of the posterior intestine of Chinook salmon before, during, and after administration of rations with and without erythromycin. North American journal of Aquaculture, 68(2): 176-185.

Mondal S., Roy T., Sen S.K., Ray A.K. (2008). Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyologica et Piscatoria, 1(38): 1-8.

Mountfort D.O., Campbell J., Clements K.D. (2002). Hindgut fermentation in three species of marine herbivorous fish. Applied and Environmental Microbiology, 68(3): 1374-1380.

Nayak S.K. (2010). Role of gastrointestinal microbiota in fish. Aquaculture Research, 41(11): 1553-1573.

Nugent A.P. (2005). Health properties of resistant starch. Nutrition Bulletin, 30(1): 27-54.

Ogueke C., Owuamanam C., Ihediohanma N., Iwouno J. (2010). Probiotics and prebiotics: Unfolding prospects for better human health. Pakistan Journal of Nutrition, 9(9): 833-843.

Onions A., Allsopp D., Eggins H. (1981). Smith’s introduction to Industrial Mycology. 7th Edt. Edward Arnold, London. 398 p.

Pond M.J., Stone D.M., Alderman D.J. (2006). Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss). Aquaculture, 261(1): 194-203.

Ramirez R.F., Dixon B.A. (2003). Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture, 227(1-4): 417-426.

Ray A., Bairagi A., Ghosh K.S., Sen S. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 1(37): 47-53.

Ray A., Ghosh K., Ringø E. (2012). Enzyme‐producing bacteria isolated from fish gut: a review. Aquaculture Nutrition, 18(5): 465-492.

Ray A.K., Roy T., Mondal S., Ringø E. (2010). Identification of gut‐associated amylase, cellulase and protease‐producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10): 1462-1469.

Romero J., Ringø E., Merrifield D.L. (2014). The gut microbiota of fish. Aquaculture nutrition: Gut health, probiotics and prebiotics, 75-100.

Saha S., Roy R.N., Sen S.K., Ray A.K. (2006). Characterization of cellulase‐producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37(4): 380-388.

Sakata T., Ohshiro T., Teshima S.I. (1993). Characteristics and fatty acid composition of yeast isolated from the intestines of rainbow trout Oncorhynchus mykiss. Memoirs of Faculty of Fisheries-Kagoshima University, 42: 51-59.

Scott K.P., Duncan S.H., Flint H.J. (2008). Dietary fibre and the gut microbiota. Nutrition Bulletin, 33(3): 201-211.

Seeley Jr H.W., VanDemark P.J. (1962). Microbes in action. A laboratory manual of microbiology. W.H. Freeman & Co Ltd. San Francisco. 383 p.

Seeto G., Veivers P., Clements K., Slaytor M. (1996). Carbohydrate utilisation by microbial symbionts in the marine herbivorous fishes Odax cyanomelas and Crinodus lophodon. Journal of Comparative Physiology B, 165(7): 571-579.

Song C., Chi Z., Li J., Wang X. (2010). β-Galactosidase production by the psychrotolerant yeast Guehomyces pullulans 17-1 isolated from sea sediment in Antarctica and lactose hydrolysis. Bioprocess and Biosystems Engineering, 33(9): 1025-1031.

Stevens C.E., Hume I.D. (2004). Comparative physiology of the vertebrate digestive system: Cambridge University Press. 400 p.

Swennen K., Courtin C.M., Delcour J.A. (2006). Non-digestible oligosaccharides with prebiotic properties. Critical Reviews in Food Science and Nutrition, 46(6): 459-471.

Tovar-Ramırez D., Infante J. Z., Cahu C., Gatesoupe F., Vázquez-Juárez R. (2004). Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture, 234(1-4): 415-427.

Tovar D., Zambonino J., Cahu C., Gatesoupe F., Vázquez-Juárez R., Lésel R. (2002). Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture, 204(1-2): 113-123.

Waché Y., Auffray F., Gatesoupe F.-J., Zambonino J., Gayet V., Labbé L., Quentel C. (2006). Cross effects of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Onchorhynchus mykiss, fry. Aquaculture, 258(1-4): 470-478.

Yoshimizu M. (1980). Microflora of the embryo and the fry of salmonids. Bulletin of the Japanese Society of Scientific Fisheries, 46: 967-975.


  • There are currently no refbacks.