Evaluation of the population growth and fatty acid composition of Copepoda, Oithona nana, fed on different diets

Fawzy Magoz, Mohamed Essa, Mustafa Matter, Mohamed Ashour


The marine Copepoda species Oithona nana, is considered as one of the most Copepoda species that successfully mass cultured in marine hatcheries. This study investigated the effects of four feed diets (soybean, yeast, rice bran, and corn starch) on the population growth, growth rate, population composition, fecundity, and fatty acid composition of Copepoda, O. nana. The experiment was continued for 15 days and the copepods were fed on four feed diets with concentration of 1 g/106 individual/day. The results found that O. nana fed on corn starch showed the highest significant population growth (9067 Individual/L) and population growth rate (0.735). For nutritional value, copepods fed on rice bran were detected to have the highest content of monounsaturated fatty acid (MUFA), polyunsaturated fatty acids (PUFA), the lowest saturated fatty acids/unsaturated fatty acids ratio (SFA/UFA ratio) and the lowest SFA. More importantly, the rice bran diet was the only diet that showed eicosapentaenoic acid (EPA; C20:5ω3). Moreover, copepods fed on rice bran showed the highest significant female fecundity (8.33 egg/female), copepodite and nauplii percentages (33.27 and 32.65%, respectively). Finally, regarding to the quantity, corn starch is the most suitable diet for mass culturing O. nana, while, regarding to the quality, rice bran enhances the nutritional value and fecundity of the Calanoida Copepoda O. nana.


Aquaculture, Corn starch, Fatty acid, Live food, Rice bran.

Full Text:



Abate T.G., Nielsen R., Nielsen M., Jepsen P.M., Hansen B.W. (2016). A cost-effectiveness analysis of live feeds in juvenile turbot Scophthalmus maximus (Linnaeus, 1758) farming: Copepods versus Artemia. Aquaculture Nutrition, 22: 899-910.

Abdel Rahman S.H., Abdel Razek F.A., AbouZeid A.E., Ashour M. (2008). Population growth rate, fecundity, filtration and ingestion rate of marine rotifer Brachionus plicatilis fed with motile and immotile microalgae. Egyptian Journal of Agricultural Research, 34: 426-439.

Abdel Rahman S.H., Abdel Razek F.A., AbouZeid A.E., Ashour M. (2010). Optimum growth conditions of three isolated diatoms species; Skeletonema costatum, Chaetoceros calcitrans and Detonula confervacea and their utilization as feed for marine penaeid shrimp larvae. Egyptian Journal of Agricultural Research, 36: 161-183.

Abo-Taleb H.A., Zeina A.F., Ashour M., Mabrouk M.M., Sallam A.E., El-feky M.M. (2020a). Isolation and cultivation of the freshwater amphipod Gammarus pulex (Linnaeus, 1758), with an evaluation of its chemical and nutritional content. Egyptian Journal of Aquatic Biology and Fisheries, 24: 69-82.

Abo-Taleb H.A., Ashour M., El-Shafei A., Alataway A., Maaty M.M. (2020b). Biodiversity of Calanoida Copepoda in different habitats of the North-Western Red Sea (Hurghada Shelf). Water, 12(3): 656.

Agbakimi I.O., Arimoro F.O., Ayanwale A.V., Keke U.N., Gana J., Abafi J. (2017). Mass culture and growth response of rotifer (Brachionus calyciflorus) fed different combinations of manure filtrates and algae. International Journal of Applied Biological Research, 8: 70-84

Ajiboye O.O., Yakubu A.F., Adams T.E., Olaji E.D., Nwogu N.A. (2011). A review of the use of copepods in marine fish larviculture. Reviews in Fish Biology and Fisheries, 21: 225-246.

Amian A.F., Etile R.N., Aka M.N., Wandan E.N., Blé C.M. (2018). Zooplankton diversity and abundance in extensive fish ponds during the rearing of tilapia Oreochromis niloticus juveniles fed with rice bran (West Africa, Côte d’Ivoire). International Journal of Fisheries and Aquatic Studies, 6: 131-136.

Ashour M. (2015). Marine Microalgae: Aquaculture and Biodiesel Production. LAP Lambert Academic Publisher, Germany. 240 p.

Ashour M. (2020). Current and future perspectives of microalgae-aquaculture in Egypt, case study: SIMAF-prototype-project. Egyptian Journal of Animal Production, 57: 163-170.

Ashour M., Kamel A. (2017). Enhance growth and biochemical composition of Nannochloropsis oceanica, cultured under nutrient limitation, using commercial agricultural fertilizers. Journal of Marine Science Research and Development, 7: 1-5.

Ashour M., Abo-Taleb H.A., Abou-Mahmoud M.M., El-Feky M.M.M. (2018). Effect of the integration between plankton natural productivity and environmental assessment of irrigation water, El-Mahmoudia Canal, on aquaculture potential of Oreochromis niloticus. Turkish Journal of Fisheries and Aquatic Sciences, 18: 1163-1175.

Ashour M., Elshobary M.E., El-shenody R., Kamil A., Abomohra A.E. (2019). Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass and Bioenergy, 120: 439-447.

Ashour M., Mabrouk M.M., Ayoub H.F., El-Feky M.M.M., Sharawy Z.Z., Van Doan H., Goda A.M.A-S., El-Haroun E. (2020a). Effect of dietary seaweed extract supplementation on growth, feed utilization, hematological indices and non-specific immunity of Nile Tilapia, Oreochromis niloticus, challenged with Aeromonas hydrophila. Journal of Applied Phycology, 32: 3467-3479.

Ashour M., El-Shafei A., Khairy H.M., Abd-Elkader D.Y., Mattar M.A., Alataway A., Hassan S.M. (2020b). Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew’s Mallow. Agronomy, 10: 420.

Barrows F.T., Sealey W.M. (2017). Antinutritional factors of raw soybean on growth and haematological. Boletim do Instituto de Pesca, 43: 322-333.

Booman M., Jones S.R.M. (2018). Soybean meal-induced enteritis in Atlantic salmon (Salmo solar) and Chinook salmon (Oncorhynchus tshawytscha) but not in pink. salmon (O. gorbuscha). Aquaculture, 483: 238-243.

Bradford-Grieve J.M. (1994). The marine fauna of New Zealand: Pelagic calanoid Copepoda: Megacalanidae, Calanidae, Paracalanidae, Mecynoceridae, Eucalanidae, Spinocalanidae, Clausocalanidae. New Zealand Ocean Institute Memoir, 102: 1-60.

Camus T., Zeng C., McKinnon A.D. (2009). Egg production, egg hatching success and population increase of the tropical paracalanid copepod, Bestiolina similis (Calanoida: Paracalanidae) fed different microalgal diets. Aquaculture, 297: 169-175.

Carli A., Mariottini G.L., Pane L. (1995). Influence of nutrition on fecundity and survival in Tigriopus fulvus Fischer (Copepoda: Harpacticoida). Aquaculture, 134: 113-119.

Conceição L.E.C., Yúfera M., Makridis P., Morais S., Dinis M.T. (2010). Live feeds for early stages of fish rearing. Aquaculture Research, 41: 613-640.

Depauw N., Laureys P., Morales J. (1981). Mass cultivation of Daphnia magna straus on ricebran. Aquaculture, 25: 141-152.

Drillet G., Frouel S., Sichlau M.H., Jepsen P.M., Højgaard J.K., Joarder K., Hansen B.W. (2011). Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture, 315: 155-166.

El-khodary G.M., Mona M.M., El-sayed H.S., Ghoneim A.Z. (2020). Phylogenetic identification and assessment of the nutritional value of different diets for a copepod species isolated from Eastern Harbor coastal region. The Egyptian Journal of Aquatic Research, 46:173-180

El-Shenody R.A., Ashour M., Ghobara M.M.E. (2019). Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Brazilian Journal of Food Technology, 22: 623-630.

Elshobary M., El-Shenody R., Ashour M., Zabed H.M., Qi X. (2020). Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum, a newly isolated green microalga. Food Bioscience, 35: 100567.

FAO (2011). FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy.

Farhadian O., Yusoff F.M., Arshad, A. (2008). Population growth and production of Apocyclops dengizicus (Copepoda: Cyclopoida) fed on different diets. Journal of the World Aquaculture Society, 39: 384-396.

González J.G., Bowman T.E. (1965). Planktonic copepods from Bahia Fosforescente, Puerto Rico, and adjacent waters. Proceedings of the United States National Museum, 117: 241-304.

Gyllenberg G., Lundqvist G. (1978). Utilization of dissolved glucose by two copepod species. Annales Zoologici Fennici, 15: 323-327

Hassan S.M., Ashour M., Soliman A.A.F. (2017). Anticancer activity, antioxidant activity, mineral contents, vegetative and yield of Eruca sativa using foliar application of autoclaved cellular extract of Spirulina platensis extract, comparing to N-P-K fertilizers. Journal of plant Production, 8: 529-536.

Heneash A., Ashour M., Mater M. (2015). Effect of un-live microalgal diet Nannochloropsis oculata and Arthrospira (Spirulina) Platensis, comparing to yeast on population of rotifer, Brachionus plicatilis. Mediterranean Aquaculture Journal, 7: 48-54.

Khairy H.M., El-Sayed H.S. (2012). Effect of enriched Brachionus plicatilis and Artemia salina nauplii by microalga Tetraselmis chuii (Bütcher) grown on four different culture media on the growth and survival of Sparus aurata larvae. African Journal of Biotechnology, 11(2): 399-415.

Kleppel G., Hazzard S.E., Burkart C.A. (2005). Maximizing the nutritional values of copepods in aquaculture: Managed versus balanced nutrition. In: C. S. Lee, P.J. O’Bryen, N.H. Marcus (Eds.), Copepods in aquaculture. Oxford, UK: Blackwell Publishing. pp: 49-60.

Lee K.W., Park H.G., Lee S.M., Kang H.K. (2006). Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture, 256: 346-353.

Milione M., Zeng C. (2007). The effects of algal diets on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis. Aquaculture, 273: 656-664.

Monroig O., Tocher D.R., Navarro J.C. (2013). Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mariene Drugs, 11: 3998-4018.

Mubarak A.S., Jusadi D., Junior M.Z., Suprayudi M.A. (2017). The population growth and the nutritional status of Moina macrocopa feed with rice bran and cassava bran suspensions. Jurnal Akuakultur Indonesia, 16: 223-233.

Najeeb A.B., Rajni R., Ashwani W. (2015). Ecological investigation of zooplankton abundance in the bhoj wetland. Bhopal of central India: impact of environmental variables. International Journal of Fisheries and Aquaculture, 7: 81-93.

Newell G.E., Newell R.C. (1933). Marine Plankton: A Practical Guide; Hutchinson Educational Ltd. Press: London, UK. 221 p.

Ohs C.L., Chang K.L., Grabe S.W., DiMaggio M.A., Stenn E. (2010). Evaluation of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture, 307: 225-232.

Øie G., Galloway T., Sørøy M., Holmvaag H.M., Norheim I.A., Halseth C.K.M., Almli M., Berg M., Gagnat M.R., Wold P.A., Attramadal K., Hagemann A., Evjemo J.O., Kjørsvik E. (2017). Effect of cultivated copepods (Acartia tonsa) in first-feeding of Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae. Aquaculture Nutrition, 23: 3-17.

Olivotto I., Tokle N.E., Nozzi V., Cossignani L., Carnevali O. (2010) Preserved copepods as a new technology for the marine ornamental fish aquaculture: A feeding study. Aquaculture, 308: 124-131.

Pan Y.J., Sadovskaya I., Hwang J.S., Souissi S. (2018). Assessment of the fecundity, population growth and fatty acid composition of Apocyclops royi (Cyclopoida, Copepoda) fed on different microalgal diets. Aquaculture Nutrition, 24: 970-978.

Payne M.F., Rippingale R.J. (2000). Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture, 187: 85-96.

Ribeiro A.C.B., Souza-Santos L.P. (2011). Mass culture and offspring production of marine harpacticoid copepod Tisbe biminiensis. Aquaculture, 321: 280-288.

Santhanam P., Perumal P. (2012). Effect of temperature, salinity and algal food concentration on population density, growth and survival of marine copepod Oithona rigida Giesbrecht. Indian Journal of Geo-Marine Sciences, 41: 369-376.

Sharawy Z.Z., Ashour M., Abbas E., Ashry O., Helal M., Nazmi H., Kelany M., Kamel A., Hassaan M., Rossi Jr-W., El-Haroun E., Goda A., (2020) Effects of dietary marine microalgae, Tetraselmis suecica on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquaculture Research, 51: 2216:2228.

Støttrup J.G., Jensen J. (1990) Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. Journal of Experimental Marine Biology and Ecology, 141: 87-105.

Støttrup J.G. (2000). The elusive copepods: Their production and suitability in marine aquaculture. Aquaculture Research, 31: 703-711.

Sulehria A.Q.K., Younus I., Hussain A. (2010). Effect of artificial diets on the growth and survival of rotifers. Biologia (Pakistan), 56: 31-37.

Tester R.F., Karkalas J., Qi X. (2004). Starch—composition, fine structure and architecture Review. Journal of Cereal Science, 39: 151-165.

Tseng L.C., Dahms H.U., Chen Q.C., Hwang J.S. (2009). Copepod feeding study in the upper layer of the tropical South China Sea. Helgoland Marine Research, 63: 327-337.

Van der Meeren T., Olsen R.E., Hamre K., Fyhn H.J. (2008). Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274: 375-397.

Vidhya K., Uthayakumar V., Muthukumar S., Munirasu S., Ramasubramanian V. (2014). The effects of mixed algal diets on population growth, egg productivity and nutritional profiles in cyclopoid copepods (Thermocyclops hyalinus and Mesocyclops aspericornis). The Journal of Basic and Applied Zoology, 67: 58-65.

Yamaguchi A., Matsuno K., Homma T. (2015). Spatial changes in the vertical distribution of calanoid copepods down to great depths in the North Pacific. Zoological Studies, 54: e13.

Yamasaki, S., Canto, J.T. (1980). Culture experiments on the harpacticoid copepod, Tisbintra elongata mori, and evaluation of that species as a food. Memoirs of the Faculty of Fisheries; Kagoshima University, 29: 275-291.

Yin X., Wang W., Wu M., Jian L., Wei C. (2013). Population dynamics, protein content, and lipid composition of Brachionus plicatilis fed artificial macroalgal detritus and Nannochloropsis sp. diets. Aquaculture, 380-383: 62-69.


  • There are currently no refbacks.